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INTRODUCTION

This investigation treats & truncated sequential test for testing
a simple hypothesis ageinst a siuple alternative. Attention 1s con-
fined to the case of sampling from a Poisson population. Although
Wald's /7117 sequential probebility ratio test (SPRT) will terui-
nate with probability one at sone stage of an experiment, there is
no pguaranteed upper bound for the sample size of this test. However,
for cases in which time and cost of sanpling are involved we often
have to face the situation of making a definite decision within a
given nunber of trials. 1ith this in mind, several sequential
tests, such as Anderson's /[ 1/, Armitage's / 2/ and Donnelly's [/ 3/,
have been proposed vhich are truncated within some fixed stage. How-
ever, none of these are directly applicable to Polsson sampling.

Here, as & variation of the SPRT, ve treat Hall's / 4/ minimm
probebility ratio test (MPRT). VUhereas for the SPRT the rejection
and acceptance lines are parallel, for the !'PRT these two lines con-
verge so that the test alweys terminates with a definite decision by
a predeteruined stage.

More specifically, we present and compare several test procedures
for testing whether a Poisson parameter has value Kl or xa (speci-
fied numbers) based on a sequence of independent observations from

a Poisson population. The test procedures considered here are:

lT‘ne numbers in square brackets refer to the bibliography listed at
the end.

PR ...



1) the sequenticl probability ratio test, both untruncated
(SPRT) end truncated (SPRTO)(Chapter 1),

ii) the minimum probebility ratio test (IMPRT) (Chapter II), and

111) the most powerful fixed sample size test (FSST) (Chapter III).
A diagram for carrying out these tests appears in Figure IQ(A.e).

A requirement in all of these test procedures is that each error
probability should not exceed a common specified level «. The bases
for comparison of the test procedures are the operating charecteristic
(0C) function, the expected semple size (ASN) function, and the stan-
dard deviation of the sample size (SDN) function. Hoeffding's lower
bound /57 (HLB) on the ASN et an intermediate value is also presented.
(Chapter III)

Major attention is given to the MPRT since the other procedures
are quite well known. An extensive discussion of this test pro-
cedure appears in Chapter II. Actuaily, the MPRT can only guarantee
an upper bound on an average of the two error probabilities. Achieving
equal error probabilities hinges on the choice of an intermediate
xo value. >"o is here chosen to meke equal the divergence (a con-
cept frou information theory) between A, and ), and between A,
and A, This value of Ao is denoted D. Some consideration is
also given to A o = 8 the slope of the SPRT acceptance lines. The
calculations indicate that either of these choices is quite success-
ful, D bveing slightly better for moderate or large « values and
8 being slightly better for small o values (5 .01). (See the

tables and Chapter V.)
2

All figures and tables appear in the Appendix.




3
For the IPRT, calculation of seven points on the OC curve, ASN

curve and SDI curve were carried out, o = .1, .05, .0l and .001, for

the followlng peirs of hypotheses:

Teble M M o
I 1 3 D
II 5 .8 D
III 5 1. D
Iv 5. 8. D
v .l ) D and s
VI 1. 2. D and s
Also presented in Teble I and VI are the sample size np for the

FSST, the meximnm sample size n_  of the MPRT, Hoeffding's lower

()
bound at D and s, and the ASN of the SPRT et four values, O, A’l’
8, end \,, calculated by Wald's approximsticn [ 117. The exact cel-
culations were performed on the UNIVAC 11053 by a progran described in
Chapter IV and A.T.

For purposes of compering the three test procedures, the calcu-
lation of 16 points on the OC curve, ASH curve, and SDN curve were
carried out for all tests, for o= .1, .05, .01, and .00l, and for

the following peirs of hypotheses:

Teble Figure M o
vII 2 .01 1
VIII 3 2. b.

3In this thesis the computer refers to UNIVAC 1105.
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Exact calculatims vere done for the OC, ASH end SDN functions of the
MPRT (xo = D) end the SPRT truncated at n_, the maximm sample size
of the MPRT, and Hoeffding's lower bound at A = s und D by
the computer. Also calculated were three values of Vald's approxira-
tions to the OC and ASN functions for the untruncated SPRT. The
FSST calculation are based on Poisson tables / 8/ to the extent avail-
able and otherwise on the normel approximetion. A discussion of the
results of the calculations appeers in Chepter V.

One use for tests concerning & Poisson population is in quality
control work where the defects in e unit are counted end the quality
of a lot or process is judged by the average nunber of defects per
unit. This differs from the test where each unit is placed into
e "defective" or "non-defective" category and the quality of a lot
or process is determined by the total number of defectives.

The defects per unit analysis is useful under the following
conditions.

i) If almost every unit contains at least one defect, a fraction
defective plan ... "derfective" or "noa-defective" classificetion ...
obviously not feasible for such a case.

ii) For products which are expensive to produce or inspect and
products customarily inspected in small lots, it is too costly to ob-
tain samples large enough to assure high discrimination by a fraction
defective plan. However, if the number of samples observed is suffi-
ciently large and the quality of the product is high, the result will
not differ greatly between these two tests.

1ii1) For this test to apply exactly, the defects must be rendomly
and independently distributed.

W



CHAPTER I
SEQUENTIAL PROBABILITY RATIO TEST
AND ITS APPLICATION TO THE POISSON DISTRIBUTION

P

Testing a Simple Hypothesis ageinst a Simple Alternative [11 Z.

Suppose X1s Xgy ceee is a sequence of independent observa-

tions with a common density function £(x:0) and let

X, = (xl, Xy e xm), m=1, 2, ..., be a sample of size m.

Let al and a2 be, respectively, the desired probability of accept-
ing the alternative hypothesis 32:9 = 62 when the true perameter

is 91, and of accepting the null hypothesis H,:0 = el when the

1l
true purameter is 6,, and call (al, ab) the strength of the test.
We also denote by d, the decision to accept Hi(i =1, 2).

For any positive integer m, the joint density function fim

of a sample of size m under H, (L = 1. 2) is
(1.1.1) £n ™ r(xi:ei) . r(x2:ei) f(xmzei)
Then, the SPRT is carried out as follows:
For suitebly chosen A and B (0 < B <1 < A), at the m-th
stage (m = 1. 2 ...) of the experiment,
(1) stop sampling and accept H, if
od e Bl e <
(1.1.2) 13<1'2J/f1J <A (J=1.2..m-1) andfan/f]m_B

(11) stop sempling and accept H, if



(1.1.3) 13<f2J/fLj <A (j=1.2...m1) and fam/fmg A

(114) ctherwise, continue sempling until fan/ £, falls into
either category (1) or (ii).
The calculation of A and B to obtain the desired strength

(a,, @.) is very laborious. Therefore, in practice . Wald suggested
1’ "2

putting
| Y - 'E -

(1.1.%) A's (1 “2)/"1 and B a2/(1 al)
as substitutes for A and B, respectively.

Denoting the resulting error probabilities by a]'_ and aé we
can easily see that
(1.1.5) o +al <o +a,
and therefore, at least one of the inequalities, ai < cxl and
aé < a,, must be satisfied. Moreover, if al = a2 = O, both

inequalities are almost achieved.

The most important characteristics of the SPRT are the opera-
ting characteristic (0C) and the Average Semple Number (ASN) func-
tions. The OC function, L(®), is defined as the probability of
accepting the null hypothesis H, when the true parameter is @.

1
An approximation 11 ] is given by

h(e)

A -1
(1.1.6) 1(e) Ah(ﬁ -Bh(o’
where h satiafies
(1.1.7) EeP% . 1

with z = log f(x:ea)/f(xzel) . If h =0 is the only solution of

(2.1.7), the right hand side of (1.1.6) is eveluated by taking the

21t s il



limit using 1'Hospital’'s Rule.
The ASN function, Ee(n) ; 18 the expectation of the sample
size when © is the true parameter and is epproximately given /11 7
by
(1.1.8) Eg(n) ~ {1.(0)105 B+/1-1(8)710g A} /Be(2) 1f Eg(z)f O
and
(1.1.9) Ee(n) ~ {L(O)(log B)2+ﬁ-L(Ol7(log A)a}/ Ee( z) 1t EG( z) =0

1.2. The SPRT for the Polseon Distribution.
Suppose )':1 > Xg eoe is a sequence of independent observations

from a Poisson distribution with mean A. We want to test the null
hypothesis H,:A=\) against the alternative Hezhxz(»l) wvith strength
(o, o).

For any positive integer m, the Joint density function of xm

under Hi is

Tx, -mh

=lx1 - n '
(1.2.1) £, " A.i e 1 /1::1 x, !
Hence,

em(A\-A

(1.2.2) Lo Ty = (Aelxl)mie whghy)
and
(1.2.3) 2, = 1og 20x, M) /2(x,:h)  =x, 10g(Ay/A)=(AyeA))

Using Wald's values (1.1.4) for A and B and taking logarithms
of (1.1.2) and (1.1.3), the acceptance rules are given as follows:
At the m-th stage of the experiment,

(1) stop sampling end accept H, if

1

[N



n
(1.2.4) L x, log (xe/hl) - m(ka-xl) < log B

i=l

11) stop sampling and accept H, 1if

m
(1.2.5) Z x, log ("2/"1) - m("a"‘l) > log A

i=]
i11) otherwise, continue experinentetion.

(1.2.4) and (1.2.5) are conveniently written as

(1.2.6) T x < o8 ae/(l-al)} + M’.’-
i=l log xe- loghl log A.a- 1ogx1

=c, + sm= 8 (say)

1=l log A, = 10z Ay log A, - log Ay

= ¢, + sn sbm(say).

2
Thus, it is seen that the acceptance lines are parsllel straight

lines with the seme slope 8 = ("a - Al)/(log My - log A,) which is

e

independent of the desired error probebilities. However, c¢, and ¢

1
are deternined by the hypotheses values and the error probebilities.

e

If oy =q,=0 frm (1.2.6) and (1.2.7) 1t follows immediately that

Cy = -Cy = C (say).

1.3 O0OC and ASN FMunctions for the Poisson SPRT.

1) To obtain the OC function of the Poisson SPRT we have to find
that value of h(A) (see (1.1.7) for which



o “(Ag=2,) .

(1.3.1) = [(xe/xl)x e 21 7h(") X oM oxt o= 1.
oo -

Surming the series and teking logarithms, (1.3.1) leads to

(1.3.2) x(xa/xl)h(") - ("2""1) h(A)-A= O.

Then, from (1.1.6), the 0OC function L(A) is approximately given
by

1. h(x) h(x) h(2)
(1.3.3) L(x)"{(

™)

!

However, it is impossible to explicitly solve (1.3.2) for h. The

Statistical Research Group, Columbia University / 10/, gave an in-
direct method of obtaining a solution, but even this method does not
yield the OC function directly for a given value of A.

For practical purposes, we can f£ind the approximate values of
the OC fmction for the following perticular values of A to give
& rough picture of the OC function of the test.

(1.3.4) % f-(fﬁ

(1.3.5) M 1-a

(1.3.6) 8 ca/(ce - cl) - 1/2 1if & =0 =a
(1.3.7) Ay @,

(1.3.8) o 0

Since for A = s we have h(A) = 0 as the only solution of (1.3.2),
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(by L'Hospital's rule) (1.3.6) 1s obtained by taking the limit value
of (1.1.6).

Ve shall introduce a graphicel solution for (1.3.2). By (1.3.2)

n1
(1.3.9) e %8(ha/) = 1+ (A, - 2) DA

To solve (1.3.9) for h, meke the following transformations:

h log (A,/A)

(1.3.10) y, = e Yo = 1+ ("2 - "1) h/\ .

Since log().a/xl) and (xa - kl)/h are fixed numbers for any given
Ns yl is an exponential curve, and y2 is a straight line. Then

the solution of (1.3.2) can be found as the intercept of the straight

1ine N2 and the exponential curve y2 as shown below .

(r = o)
(h > o) Y1

The accuracy of the graphical solution can be improved, if desired,

by & Newton iterstive procedure.

From the h found by this method we can obtain the approxime-
tion of L(A) by substituting h into (1.1.6).

11) 1In order to obtain the ASN function from (1.1.8) or (1.1.9)
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we have to now the OC function, XI{)\). However, as we have seen
in the preceding perts, the OC function can only be faund spproxi-
nately. For the following particular values, the Tollowing approxi-
metions to the ASN function may be found from (1.1.8), (1.1.9) and
(1.3.4) to (1.3.8):

(1.3.11) ﬁ ~B"(n)
0 -cl/s
(1.3.12) M { (1- al) c, + “Lce} /("1' s)

-(l-a!)c/(s-hl) ita =a,=a

(1.3.13) 8 - 0102/8 - 02/! ir ==

(1.3.14) N { (1- ae) c, + aecl} /(J\2 - 8)

= (1-2a)c/(\, - 8) if a =0 =0
(1.3.15) ® 0 2 1%
(1.3.13) is obteined from (1.1.9) since Es(z) = 0. These particular

five values of A will serve sufficiently well for most practical

purposes.
Although it 1is known that 5‘(02) exists, neither exact nor simple

approximate formulae to obtain the variance of N have yet been found,

and very few empirical studies have been undertaken. However, from
Tables VII and VIII it will be seen that the standard deviation of N
for a truncated SPRT tends to be very large when A 1is between ).1
and )‘2 and a 1is very smll.



1.4. The Pruncated SPHT

S8ince the SPRT has no upper bound for the sample size, for prace
tical purposer we mey have to force the test to terminate at some
definite stage, say n_, of the experiment. Vald [11] gave these
rules for truncation.

If the test does not terminate by the n o-th stage, at the no-th

stage,
i) stop sampling and accept B, 1if
ng-1 o
(1.4.1) logB< & 2, < logA end logB < £ gz <O
i=1 i=l
1i) stop sampling and accept B, ir
no-l ny
(1.4.2) lgB< L 2, < logAhand 0< I gz, < logh
iml iwl

In this thesis we use the following rules for truncating the
SPRT. Let n, be the maximm sample size of the MPRT (8¢ 2 Chapter
II) under the same hypothesis and strength, then the terminel decision
at the n o--th stage will be the following:

1) Stop sampling and accept B, ir

n, a.no + bno
I x " <
1=l 2

t &
®
=]
+
uo'

i=)l 2



If the SPRT 1s truncated at a sufficiently large nge it is
to be expected that the error probadbilities will not be greatly
affected. However, truncation will reduce the average sample size
somevhat, especially for intermediate A\ values and it will have
e sinmiler effect on the SDN function.




CHAPTER II
MINDINM PROBABILITY RATIO TEST AND ITS AFPPLICATION
TO THE POISSON DISTRIBUTION

The expected value of the seuwple size (ASN) of a sequential
test depends on both the parameter point © and the particular
sequential test. Ideelly, we would like to find a sequential test
which ninimizes the ASN function for all values of O, but no such
"unifornly most economical” test exists. Hoeffding / 5/ has given a
lower bound on the ASH at intermediate A-values (Chapter III) for
any sequential test meeting specified bounds on the error probebili-
ties. In order to come close to achieving this lower bound under cer-
tain conditions, Hall /"4/ introduced the sequential minirmm probe-
bility ratio test (MPRT). In this chapter we give a general dis-
cussion of this test and then consider the special case of the

Poisson distribution.

2.1. The Minimm Probability Ratio Teect (MPRT) for Testing a Simple

Hypothesis against a Simple Altermative.

Suppose X Xy oo is a sequence of independent observations
with a cormon density function £(x:0) and consider testing the null
hypothesis Blz 0= 01 against the alternative 52: QO = 02. Iet °o
be a paraueter point between 01 and 02
Denote by X = (xl, Xo oo xm) e sample of size m and f, ~the

and £, = £(x:0,)(1+0.1.2).

Joint density function of xm
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1 and ka where kl + kan 1,
for £

1 and f2, respectively, to obtain a specified weighted average,

We introduce the weight functions k

«, of the error probabilities (see section 2.2).
The IMPRT procedure is described as follows: at the n-th stage

of the experiment,

1) stop sampling and accept B, if

(2.1.1) k8, /2, < a end k£ /k.f, < 1
1i) stop sampling end accept B, if
(2.2.2) Kt /f < a and kit /A, <1

111) otherwise, continue sampling.

Since the acceptance lines generally converge at scme stage of
the experiment, say n o’ the test has the upper tund n, to the
neximum number of trials, and therefore, either category i) or ii)

will occur for some n 5 no.

2.2. lajor Property of the MPRT

Let Pi(d,j) = ai be the probebility of meking the decision

dJ(J = 1,2) vhen H,(i =1,2end i J) 4s true. Then,

(2.2.1) k, & =k P (dz) = ky m;::l ! £
8
m

L]
' =
(2.2.2) k, o *, Py (dl) k, mf | o
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vhere S:'l (1 = 1.2) is the subsets of the sample space of )Sn for
meking decision 4., by (2.1.1) and (2.1.2), reapectively.

Vie show one of the importent properties of the MPRT by the
following lemma:
Lemma 1 /[ 4/:

For the MPRT with specified O o’ the specified weighted average

of the true error probebilities is not greater than the preassigned

value Q.

Proof: In sz it 13 obvious that

min k, = k f <aft H

je1.p 17im 1 'm ~ o
that is,
[
J

(2.2.3) ko < aiilf t, = @ P (da)

2

s

m

vhere P o(di) is the probebility of 4, when O is the true

parameter value. Similarly, in S;

(2.2.4) ky @y < o P(q,)

Hence, it follows immediately that

(2.2.5) ko + kyay < a[Po(dl) + Po(da)_J = o
assuning the acceptance lines converge.
For the case k, =k, = 1/2, from (2.2.3) to (2.2.5) we have

o < 2aP(4), aj<2aP(d,)end of +af < 20 If O can



17
be so chosen that Po(dl) = Po(dg) = 1/2 , then o <o end o <o
In any cese, at least one of the inequalities must hold since
ai + aé < 2a.

No method of choosing © o to achieve specified individual error
probebilities is known, except for a limited result in the case of
symetry /b /. Such symmetry does not obtain in the Poisson case
considered here. Ve shall attempt to achieve equal error probebilities
by a method described in section 2.k4.

2.3. The MPRT for the Poisson Distribution

Let X9 Xy e be & sequence of independent observations from
& Poisson distribution with mean A. We wish to test the null hypo-

thesis H,: X =\, against the altemative H,t A = A, ( > M), and

assume weight functions k, =k, = 1/2 and a < 1/2.

1
The MPRT is carried out as follows:

at the m-th stage of the experiment,

1) stop sampling and accept H if

n X -
x >"21 e )\2/ x, !
- isnl < 2
Lo/ P1m T AR S 2c
LI S /xi !
i=l
i.e.
n log 2 (A - A\.)
(2.3.1) Zx < + e %o = ¢+ rym (say)

iel © 7 10g A= 1og A, 1og A,~10g A

which lmplies fan < flm

11) stop sampling and accept B, if
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n - log 2 m(A -\, )
(2.3.2) = x, > + Cle! = ¢y + 10 (say)
il log )‘o - log )‘1 log A ~ log )‘1

which iuplies fon 2 fin

311) otherwise, continue serpling.
(2.3.1) and (2.3.2) will define the acceptance lines of the test.

These two lines meet at n = n") vhere

Cl- 02

n' =
(0

T, - T

and hence, this is the upper bound for the sauple size. The actual

reximm sample number n o will be an integer slightly smeller than
n'.
o

An illustrative dlagram for carrying out this test with a com-

parison of the truncated SPRT and the PMSST appears in Figure 1

in the Appendix.

2.4. A Choice for °o

In the MPRT it is possible to choose °o at any paremeter

point other than 01 end 02, depending on our emplasis on the error

provabilities ai and aé and the weight functions k. and k..

1 2

In this thesis, we will choose @ o in an attempt to obtain espproxi-
mately equal error probebilities st 0, i.e. P _(4,) = Po(da)' Fron
this point of view, we take o, as the velue which ylelds equal "di-

vergence" [ 7/ between O, and @ o’ and between O  and 0, .

1 2
Suppose the null hypothesis is H,: £(x) = fl(x) and the alter-

native Hy: £(x) = fe(x); then for a given x, the mean information
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for discrinination per observation in favor of Hl against H2 is

aefined / 7/ a8
£,(x)
"‘ £,(x)
vhere ¥ 1s the entire sample space. [ (2:1) is similarly defined.
Under the assumption that the probability measures for fl(x) and
fa(x) are "absolutely continuous”, the integrals always exist.
The divergence D{1,2) between B, end H, is defined [7] es

fl(X) d x.

4. ) = 1 = -
(2.4.1) D(1,2) = 1(1:2) + I(211) !pl(x) £,(x) 7108 0

D(1,2) 15 a measure of the difficulty of discriminating between
hypotheses H1 and H,, and thus will be a reesonable choice to deter-
mine O for the MPRT. Further detailed discussion concerning in-
formation and divergence vill be found in Kullveck /[ 7/.

Example: Poigson case

A
Suppose le A=y i.e. fl(x) - x: e l/x!
and
x M
Hy A=A, Lee fa(x) =\ e /x!
Then, by definition -
X N )s: e kl/x!
(1:2) ; 1 e- 1 log X;
I(1: = - -
w=0 x! L: e “/x!
L ) - (g = A)
= — e x{log A, - 1log A,) - - A
Z 1 2) = (M = A




(2.4.2) = (log M - log "2) M- ("1 - "2)

Sinilerly,
(2.%.3) 1(2:1) = (log Ay - log 7‘1) Ay = ("2 - xl)

Hence, from (2.4.1) to (2.4.3),

(2.4.4) »(1,2) = (;,2 - xl)(log A, - log "1)

For sone xo, vhere kl < )'o < NE’ the difficulty of discrini-

nating between hypotheses A’l and A\ o and between A\ o and ha is
equal. That is, }‘o is obtained firom

D (1,0) = D(0,2); that is

(xo- xl)(log Ao - log "1) = ("2 - xo)(log Ay - log xo)

(2.4.5) a(rn )= (log A,-1og A, + (Ay=A;)10g A + (Ay108 A;-Ay108 A,)
= 0.
Newton's approxiretion method was used to solve this equation

numerically, starting with the initial value A = ("1 + xa)/a.
That is,

a
Moe1 = Moy 81N/ ; &(r,)

xo(log Agm w08 x1)+(>.2- xl)log A 108 Ay -Asl08 A,

(2.4.6) = Ko +
106 2y - 208 2 + (g < A

(i = 0. 10 veo )
with the criterion for stopping the {teration

-3
| A Ny | <10

0.141 ~
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and 1 < 200.
By this method, divergence values in the Appendlix were computer
calculated. This xo value is there denoted by D.
A few examples were considered using A o ™ 8 instead of xo = D;

a comparison of these choices is discussed in Chapter V. It was found
that D <s.



CHAPTER III

FIXED SAMPLE SIZE TEST AND
HOEFFDING'S LOWER BOUND FOR THE EXPECTED SAMPLE SIZE

3.1. Most Powerful Test for the!Poissoh Distvibition.
To mmke a sample size comperison between the MPRT and a fixed

sample size test (FSST), we need to f£ind the minimm sample size for
the nost powerful FSST with specified bounds on the error probabili-
ties. The most powerful FSST is obtained by the Neyman-Pearson
leme.

For the Poisson case with sample size m, the test is carried

out as follows:

i) accept H, if

A
fall - i=l

[ ]
.
»’G

(3.1.1)

> x (>0)

™ T A e l/xil

i11) otherwise, accept B

Teking logarithms on both sides of (3.1.1), it follows that

]
121 X, (log Mo~ log "1) - n(x2 -M)2 Kk
and
n
(3.1.2) Eox > k"
i=1
n
We know that the random varisble y = L x, has the Poisson dis-
i=l

trivution with meen m\, i.e.
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(3.1.3) gly) = (aa) eyt

If the Type I error al and the size of sample m are glven,

k" 1is obtained as the smellest integer for which

(3.1.4) 1- le (k" - 1) <
vhere Fx(x) is the Poisgon distribution function at x., If the
Type I error oy and the Type II error Q, are preassigned, the
sauple size can be obtained by finding k" and the minimal m which
will satisfy,

(3.1.5) 1- le (k" - 1) < X

and

(3.1.6) Fma (k" -1) < %

3.2. Normal Approximation for ihe Poisson FSST

If A 1is large, the Poisson distribution can be approximeted by

the 1Jormel distribution. That is,

(3.2.1) B (x) = 0 (x—'[;_—*—%@)

t

vhere o (t) -.f (1/ fer ) e'xa/2 ax
Then, by (3.1.5) and (3.1.6)

kK" - 1-m, +1/2
(3.2.2) o ( 1 ) 2 1-q

/iy
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k" - 1-m2+1/2
) £ o
faks

are the required inequalities.

(3.2.3) o (

If the Poisson mean is not large, the normel approximation mey
not be adequate 80 that the following rule was used. If (m xl)l/ 2
< 4.0, several integer values were chosen in the neighborhood of
the m which was obteined from the Normel approximation method.
These were substituted into (3.1.5) and (3.1.6), with suitably chosen
k" 8 from the Poisson tables, until (3.1.5) and (3.1.6) were satis-
fied. The minimum such m is the sample size of the most powerful
test. In the tables in Appendix those velues obtained by the Normal
approximation appear with #, such as n; and !‘SST* .
3.3. Hoeffding's Lower Bound (HIB) /57

Let xl, x2

e common density function f£(x:0), and suppose we want to test the

be a sequence of independent observations with

null hypothesis H1= 0= 01 against the alternative 52: 0= 02.

Also, 1let f£(x:0) = fi(x:O) under 31(1 = 1.2), and the decision

di is to accept H:l‘

As one of the optimum properties of the SPRT, it has been proved
/[12] that the SPRT minimizes the expected sample size at the points
°1 and 02 subject to specified bounds on the error probebilities.

In general, its expected sauple size is largest when O 1is between
N and 02 but not always (see Figure 2). However, there exist
tests which have a smeller expected sample size at intermediate O

values than the SPRT. Kiefer and Veiss / 6/ have discussed impor-
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tant qualitative properties of such tests. These tests may be judged
by compering, at any perameter point ¢, the expected sample size of
the test with the smallest expected sample size attainable by any
test baving the seme error probabilities at 01 and 02.
The Hoeffding Lower Bound on the expected sample size at any

°o is given by

(:32) % M) 2 [LGMF - ¢ (o + ) 72 - o/ }2 /e

assuning that the following integrals exist

(3'3'2) C = 1:_?2 (gl’;a) ’ gi = f fO 108 (fo/fi) a B

and

(5.3.3) = [{ros (e - v, }2 £, du -
Also assume that

fo(x) = 0 implies nin £, = O
i=1,2

and that
N
E, (E YJ)Q = E(W)
j=l

is satisfied wvhere YJ - log{fz(x)/fl(x)} -ttt -

Hoeffding proved [ 5/ that for <11 @, (3.3.1) gives a lower
bound among &ll strength (al.aa) tests.

For the ormal density function with variance one and mean 01
vhere °o = 0, °1 = -3 and 02 = 8 > 0, he compared the numerical
values obtained by his lower bound with those of the fixed saumple
size test, one of Anderson's tests / 1/ and the SPRT of the same

strength (al, aa). For o) = a,=a< 1/2, the results indicate that
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equality in (3.3.1) 1s nearly obtainable with a FSST if o 1is very
small and with the SPRT if « is sufficiently large. For other o
values, those commonly used in practice, the MPRT (which coincides

with one of Anderson's tests) unearly attains this bound.

3.4. Hoeffding's Lower Bound for the Poisson Distribution

Suppose f{x:A) = A* e"‘/x ! end we wish to test H;t A =)y
against H,: A = A, (> )‘1) vith strength of the test o =@, =«
< 1/2. 'Then, by definition (3.3.2)

“N\
o Ay AX e 9!
g = T A e 1log —
( » -}‘0/ ® X -)‘O
= (Z a.e /xt) xlog(A /A )(AeN)E AL e T/x!
xs0 © o' "1 o1 oo ©
(3.4.1) = A (20 A, = log xi) - (xo - xi).
Therefore,

(3.5.2) ¢ =, (log A - log &) - (A - Ay)

(3.4.3) {5 =2, (log A - 1og A,) - (A, - &)

Also by definition (3.3.3)

-\ -\
2 o xoe ° x; e ©
A e TR LU TP LN
‘ N, e
1

2
+ (log A - log "2) + (}‘2 - ho)}
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=\
© xoe ° { ( 2
- I x(log A,- log A )+ A logk-logk)}
yeo x1 2 1% %o 1 2

(%) -\
= xzso (x: e °/x ') {(log A= log )‘1)2 (x - 7\0)2}

(3.4.4) = A, (g A, - log 1))

For any A’o we can obtain Hoeffding's lower bound by substituting
(3.4.2) or (3.4.3) end (3.4.4) into (3.3.1).

Fron (3.4.2) and (3.4.3) 1t is easily seen that the relation
;1 = ;2 s { 18 obtained at

Ao = (A, = 2)/(108 A, - 10g A,)
end this value of xo is equal to s, the comon slope of the accept-

ance lines of the SPRT for the Poisson distribution under the same
hypothesis. For xo = 8, Hoeffding's lower bound is given by

[ A, 2 . 1/2 /2 xﬂa

{1-2-(108 ,\—:) - (s og -,-;i - 8\ )10 20f - § log -

(3.k.5) E/(N) >
8 log %1 -8 - "1
The EB(N) ¢? the SPRT is given approximately by (1.3.13), therefore,
we can coupare Hoeffding's lower bound with the approximation of the
SPRT ASN at )‘o = g,
The HIB's in the tables in the Appendix were camputer calculated.



CHAPTER IV
THEPROGRM‘I.SFOR'I‘EEI-‘PMANDTHESPMO

FOR THE POISSON DISTRIBUTION

In this Chapter we discuss the progrems by which the exact
0C, ASN and SDN functions of the !MPRT and SPRTO were obtained for
the Poisson distribution. The progreus (for the IPRT and the SPRT,)
were written in the "IT" language [ 9/ and stored as "K. Fukushims,
MPRT - A" and "K. Kukushiue, SPRT - A", respectively, in the library
of the Research Corputation Center, the consolidated University of
North Carolins, Chapel Hill, North Caroline, for future use. The
detelled compiler program for the }MPRT is shown in A.T7.

h.1. Brief Explanation of the Progran for the MPRT

let
n, (integer): the acceptance boundary for the i-th trial.

Ei (integer): the rejection boundary for the i-th trial.

p(_n_:i): the probebility of acceptance at the i-th trial.

p(?.ii): the probability of rejection at the i-th trial.

p(mi. J): the probability of J defects (J = £ x) at the i-th trial.
n': the point at which the acceptance and rejection lines intersect.
n_ ! the meximum possible nuuber of trials; the least 1 such that

n, -

g - B <1
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nlz the nunber of Poisson probebilities to be calculated.

nlucz-cl+5

84, a2= the ordinates (£ x) of the acceptance and rejection lines

1)
at no.

A1, A2 ... A1l (input): The parameter points for which the 0C,

ASN and SDN functions are to be calculated.

By (1.2.6) and (1.2.7), after we deternmine the boundaries for
acceptance and rejection and n,, we perform the following calcula-
tions for (1 < no)

min, (J,Ei-l.l)

Pln, ,) = z P(n ) . B(J - k)
1.3 ke, _y+1 ( 1-1.k N

vhere Px(x) is the Poisson probebility of x with meen A.

Ei Bi'k
P(m,) = b {P(m L) = P.(x) } if m . ém
=1 k‘Ei.1+l i~ 1.k Xm0 A 1-1 i
P(m,) = 0 otherwise
and _
,) sl {rep10 Z = }
P(n = Z P(n z P, (x

The 0C, ASN and SDN functions are given by
n

L(\) = zo P(p_i)
i=l

nO
B0 = = 1{m) G )
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4.2. Varisble Assignments for “MPRT - A"

Y 1 (input) = Ay Y2 (input) = A, Y3 (input) = M

Y4 (dnput) =, ¥ 28, Y29 ... Y38 (4nput) =2 1, A2, ... A 11
Nl-;,na-a,nsoo-no,ngoaanl
N10 = N300 m , N50 = 11901»:‘::11

N 905 == N 1050 : Alphamuweric

Y5=¢ Y6=rl, Y7-02, Y8 =1x

1’ 2

YlOO-—Yh99:P(m1.J), Y500—Y999:P(n1.d)
Y 1000 = Y 1999: PK(J) s Y 2000 ~ Y 24003 P(p_ti)
o

Z0 = 729998 T p}\(x), z1ooo--z1999:%1>x(x)
x=) x=0

Z 2000 = 2 2400 @ p(x‘ni) vhere j =0,1, 2, ... ny

4,3. The Progrem for "SPRT - A"

The storege spaces for the variable assignments are very simi-
lar to the program for the MPRT, except for the following changes.
For input,

1) Yler , Y2a),, Y3=aq,Yha=qg

i1) the truncation point (N 900 = n o) mst be given

111) the nusber of parameter points for which the 0C, ASN and
SDi functious are to be calculated is 10(Y29, ... Y38) instead of
11 in "MPRT - A" .

4.5. OQutputs and Capacities of the Programs, "MPRT - A" and "SPRT-A".

Unconditional outputs for these programs are as follows:
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)»1) KO, %-2, CZ and kl) Ka s 00 ).11

Cys Tys Cps Tps n’° and n (for the MPRT - A)
c; 8 end c, (for the SPRT - A)
a, and a, (vhere a, = a.2)

For k‘)\l’ m, .-.Kll

no no
t Pp(n), z P (m,)
4m1 M1 =1 M1

ASN, the variance of N, and SDN

For conditional outputs of the progrems, the following outputs are
added:

n, »m and Ei (1=0,1, 2, ... no)

J «
P)‘(:)) ’ xz;o P}‘(x) and xEJ Pk(x) vhere § =0, 1,2 ... my

P(m1 J) for the i1-th trial (1 = 1.2 ... no)

P(gno) and P(Eno) (for SPRT - A)

By "IPRT-A" and "SPRT - A", we can take any hypothesis values
xl end xa and the error probabilities o < % as long as n, and
L x do not exceed 40O end 500, respectively. Also, the core
storage used in the computer is 7695 for "MPRT - A" and 7752 for
"SPRT - A". However, one can change the progrem according to the
requirements of each particular problem and a computer capacity.

The time for computation was about three ninutes, and the calcu-

lation of the OC, ASN end SDN functions at one paremeter point for
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each of eight sets of hypotheses with four error levels; that is,
one A velue for each of thirty-two test situations, tock about

fourteen minutes. Similar time is required for "SPRT-A".




CHAPTER V

In this chapter we discuss the characteristics of the MPRT
fron the date obtained, with comparison of other tests, the SPRTO,
the SPRT and the FSST.

By the use of dlvergence to obtain A, and k, =1lk, = 1/2, the
test nearly achieves Po(dl) = Po(d"a) vhen o 1s not very small,
and xl and A.a are not very distinct. As already nentioned in
section 3.2, the sun of the exact error protabilities, ai + aé ’
is smaller than the preassigned level 20 . Moreover, even though
the test for the Poisson distridbution is not syrmetric, we observe
that aifal and aéfae, and if o is not very small, aifaé
in general. As nentioned in the introduction, the use of xo =D
gives slightly better results to achieve Po(dl) = Po(de) for
larce o values and A‘o s S gives slightly better results for
smmll «Q.

Comparing the OC functions of the MPRT with the SPR'I'O and
FSST the following points mey be found:

i) the SPR'.I‘o has generelly higher discrimination than the MPRT
between A

1
tends to be close to the SPRTO. However, the difference between

and x2 for srell o, the OC function of the MPRT

the OC functions is not sufficiently large to be of particular in-
portance; and

1i) the MPRT has generally higher discrinination for stmll o than



36

1 and xa. But if o is large, the FSST

tends to have uniformly higher discrimination.

the FSST except near A

Fron the tebles ai.l graphs shown in the Appendix we see the
following characteristics of the ASN function of the MPRT.
1) The smaller the omvalue, the closer to s 1s the raxirmnm velue
of the ASN of the MPRT.
11) For stall o, the ASN of the MPRT is smeller than both the SPRT,
and SPRT for some values of A between M and xe, but the naxirnn
of the ASII for the MPRT and SPR'I'O are not very different.
111) The ASN of the MPRT is wniformly smeller than for the FSST ex-
cept for extremely smell o values.
iv) The HLBat A =D (and A = 8) is nearly attained for large
values of o by the MPRT. For sualler values of «, even though
the ASN of the MPRT is not close to the HLB, it is closer than the
ASN of the SPRT or the FSST.

Ve observe that for any « values the MPRT is uniformly amaller
than for the SPRT o which i1s presumnbly smeller than for the SPRT.

Therefore, the MPRT w.ler these conditions appears to be ad-
vantageous as compered with these other tests when the parameter
point lies near the average of ),1 and ),2, and particularly vhen «
is srmll. Ever if the ASN of the MPRT is slightly larger than of the
SPRT, the use of the MPRT may be recamended because of its smaller
Shii. Further studies of the MPRT for various weight functions ‘1

and k2 should yield useful results.
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APPEIDIX I

Notation

The following notation 4s used in the tables and figures

in the Appendix:

SPRT :

o

the operating characteristic function

the averege sample mumber function

the standard deviation of the sauple size N

the most powerful fixed sauple size test

Hoeffding's lower bound for the ASN

the minirnm probebility retio test ().o = D)

the nuribers in parentheses in the tables V and VI were obtained
by the MPRT (A, = ®)

the sequential probability ratio test

the sequential probebility ratio test

the numbers which have * in the SPRT in the tables VII end
VIII were obtained by teld's approximeticn for the SPRT

the sequential probability ratio test truncated at n,

the specified bound on each error probability

"o value for which the divergence between "1 and >‘o equals
the divergence between xo and "2

the slope of the SPRT acceptance lines

the sample size of the FSST obtained from the Polsson distri-

bution (with linear interpolation in the tables)

~omi
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the sample size of the FSST obteined fron Norral approximation
the rexirum sampie size of the MPRT (xo = D)
the maximm semple size of the MPRT (xo = 3)
the HLBat A =D

the HIB at A = s
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APPENDIX III
A3, TABIES I - IV: Characteristics of the Poisson MPRT and
SPRT Approximation.
A3, 1, TABIES I - 1, 2, 3, L.
Hl: A = .1 against H2:
8= .18205 D= .18652
TABIE I - 1
a=.,1, n, = 52, np = 31
oc ASN SDN of
A HIB
MPRT | SPRT# MPRT SPRT* MFRT
o} 1 1 15, 11 0
.1 .9203 .90 | 22.83 19.75 7.88
.17 585k 24 .63 10.37
8 5175 .50 24,28 21.97 20.40 10.62
D 4929 k.11 19.18 10.71
.25 2112 20.31 10.97
.3 0932 .10 16.90 13.73 10.13




TABIE I - 2

a='05:n°=79:nr=52

b1

ASN SDN of
A HIB
MPRT | SPRT# MPRT SPRT* MPRT
1. 1. 21. 15. 0.
1 9594 .95 34,15 29..48 11.07
.17 9T 59.81 15.09
5116 .50 39.28 39.46 34.37 15.55
4805 38.98 32.17 15.71
.25 1497 31.32 15.98
.3 oks5 .05 24,79 20.51 13.99
TABIEI - 3
a=.01, n, = 10, np = 102
ASN SDN of
A HIB
MPRT SPRT# MPRT SPRT* MPRT
1. 1. 35. 23, 0.
.1 .9916 .99 59.68 49.96 1£.65
17 £237 79.49 .35
« 5054 .50 T8.59 96.10 k6 26.47
4621 T7.88 66.48 26.87
.25 .0706 56.85 26.75
.3 .0087 .01 41.79 34,76 20.79




ko

TABIE I - &4

o = .001, n = 223, n§,= 180

oc ASN SDN of
R v e — et [ MPRT
0 1. 1, 55. 35. 0.
1 .9991 .999 | 95.0k4 76.47 22,04
17 | 657 142.18 38.03
8 .5028 .50 141.1 217.1 130.8 4o,22
D Lls9 139.7 121.1 k1.13
.25 | .0256 92.25 39.04
.3 .00088| .001 | 65.01 53.19 27.11
A.3.2. TABLES II - 1. 2, 3. &,

Hy: A = .5 against 32: A =.8

s = .63829 D = .64122



TABIE II - 1

Q= .l, n°-87

e

L3

oc ASN SDN
MPRT SPRT#* MPRT SPRT#* e MPRT
1. 1. 1. 8. 0
9127 | .90 31.14 | 27.38 13.22
.6Uk8 36.09 15.40
5064 | .50 36.07 | 34.24 31.56 15.80
.4958 36.03 30.85 15.83
.2991 33.84 15.99
.0923 .10 27.29 | 23.42 14.53
TABLE II - 2
a=.05,n°-126 n;-78
oc ASN SDN
HLB
MPRT SPRT* MPRT SPRT#* MPRT
1. 1. 15. 10. 0
P59 | .95 46.87 40.88 18.41
6173 58.53 22.51
5042 | .50 58.93 61.49 53.15 | 23.23
.4908 58.85 51.82 | 23.28
.2491 54.14 23.64
.0l58 .05 40.66 34.96 20.32




*
as= .01, n, = 217 ny = 155

TABLE II - 3

oc ASN SDN
HLB
MPRT SPRT* MPRT SPRT#* MPRT
1. 1. 25. 16. 0
9911 | .99 82.02 69.29 27.89
.T368 116.5 38.15
.5018 | .50 119.3 19.75 | 110.% 39.50
4831 119.1 107.3 39.62
.1693 104.8 40.82
.0090 | .01 70.18 59.26 30.58
TABLE II - 4
@ =.00, n =350 ng=27h
oc ASN SDN
HIB
MPRT SPRT# 1.PRT SPRT* MPRT
1. 1. ko, k. 0
9991 | .999 130.4 106.1 36.81
7973 295.5 58.43
5007 | .50 215.3 338.3 201.9 60.08
4760 214.9 195.8 60.36
.1025 179.3 63.20
.00089| .001 110.5 90.69 40.10
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A.35.3. TABIES IIT - 1. 2, 3. 4.
le A = .5 egainst H2= A=l
s = .72135 D = .72850
TABIE IIT - 1
Q= -l, no = 51" D.F = 22
oC ASN SDN
A IIPRT | SPRT* MPRT gprre | HIB MPRT
0 1. 1. 6.0 5. 0
.5 .9185 .90 13.81 11.60 5.40
.65 .6683 15,70 6.45
s .5083 .50 15.62 13.93 12.87 6.74
D 14929 15.58 12.41 6.76
.85 .2553 ik.11 6.86
1. L0877 .10 11.47 9.21 6.22
TABIE IIT - 2
o= .05, n°-52 nF=32
oC ASN SDN
A HIB
IPRT | SPRT* MPRT SPRT* MPRT
0 1. 1. 9. 6. 0
5 .959% ) 20.33 17.32 7.49
.65 7054 24,89 9.29
8 .5084 .50 25.02 25.02 21.67 9.76
D .488L 2k.95 20.84 9.80
85 .2026 21.95 10.00
1. Obh2 .05 16.77 13.76 8.66




TABLE III - 3
o= .01, n°-88 n;-&
B oc ASN SDN
HIB
MPRT SPRT#* MPRT SPRT#* MPRT
1. 1. 15. 10. 0
.9915 .99 35.42 29.35 11.19
. 7655 48.69 15.51
5014 .50 49.85 60.93 45.01 16.48
4736 49,66 43.11 16.59
<1185 40.82 17.04
.0084 .01 28.22 23.32 12.81
TABLE III - 4
a=.001, n, =14 n;-lli
oc ASK SN
HIB
MPRT SPRT* MPRT SPRT* MPRT
L
1. 1. 23, 1, (o]
«9991 +999 56.07 4,93 .71
.8289 84.77 23.53
5006 | .50 89.25 | 137.64 | 82.34 24,92
RISy 88.87 78.61 25.17
<059 67.96 25.76
.00082| .001 b4.07 35.69 16.7T1

Y i calke:
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A.3.4, TABIES IV - 1. 2. 3. &
Hit A = 5. against Hyt A = 8.
s = 6.3829 D = 6.4122
TABIE IV - 1

oC ASN S

A HIB

MPRT SPRT#* MPRT SPRT* MPRT
0 1. 1. 2. 1. 0
5. ¥ .g%05 | .90 3.80 2.7h 1.59
6. | 6551 L.54 1.88
s 5290 | .50 4.80 3.42 3.16 1.88
D 4919 4.57 3.08 1.91
T 2793 4,31 1.91
8 .0728 | .10 3.48 2.34 1.69

TABLE IV - 2

a-.O‘j, no-lll», n;ﬂe

N TR 2 MASN Eenan rs:m
0 1. 1. 2. 1. 0
9649 | .95 5.39 4.09 2.04
6. .6900 6.87 2.52
s 5427 .50 T.43 6.15 5.31 2.52
D .4908 5.9 5.18 2.61
7. 2374 6.37 2.64
8. 0367 | .05 4.78 3,50 2.22

Ao .



*
a= .01, n°=22, nF=l6

TABIE IV - 3

oc AsN SDN
A HIB
MPRT SPRT* MPRT SPRT* MPRT
0 1. 1. 3. 2. 0
5 9929 .99 8.92 6.93 2.94
6. STUbT 12,82 k.03
8 .5070 .50 13.28 14,98 11.04 k.09
D .4806 13.11 10.73 k.19
7. .1605 11.56 4.31=
8. .0070 .01 7.76 5.93 3.18
TABLE IV - &
@=.001, n =35, n;=28
oc ASN SDN
A HLB
MPRT SPFT# MPRT SPRT* MPRT
0 1. 1. 4, 3. 0
5. 9995 | .999 13. T4 10.60 3.71
6. '.8010 21.70 6.05
s 4989 | .50 22.80 33.83 20.19 6.18
D 4735 22.75 19.58 6.21
7. .0969 19.00 6.50
8. .00069 | .001 1.8 9.07 k.09
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APPENDIX IV

Ak, TABLES V - VI: Charecteristics of the Poisson MPRT

(ho = D and 8) and S8PRT Approximation

th-l. TABIES V ol lo 2. 30 2"

I-llsx-.l ageinst 32=>~=-5

s = .2u853 D = .26129
TABIE V - 1
o =.1, no-sls, (n = 18), nF-ll
oC ASH SDN
HIB
MPRT SPRT#* MPRT SPRT#* IPRT
1. 1. T. 6. 0.
(1.) (7.) (0.)

.9378 .90 9.08 7.44 2,80
(.9392) (8.92) (2.56)
.6856 9.7 5.66
(.6933) (9.51) (3.43)
5391 | .50 9.50 7.50 | 7.03 3.92
(.5496) (9.28) (3.72)
.5022 9.39 6.37 3.98
(.5131) (5.18) (3.76)
.1988 T.70 4.09
(.2094) (7.59) (3.95)
.0909 .10 6.45 4.4 3.78
(.0980) (6.40) (3.69)




TABIE V - 2

a= .05, n°-26 (nOB-26) ng = 19

oc ASN - SDN
MPRT SPRT#* 1PRT SPRT#* MPRT
1. 1. 10. 8. 0.
(1.) (10.) (0.)
9646 .95 13.43 | 11.12 3,72
(.9663) (12.84) (3.53)
6975 15.08 5.21
(.7059) (1%.60) (5.07)
.5167 .50 14.64 13.47 11.85 5.73
(.5278) (14.30) (5.51)
4711 14.43 10.68 5.84
(.4826) (14.13) (5.60)
.1302 11.00 5.95
(.2397) (11.0%) (5.65)
.ok17 .05 8.72 6.57 5.20
(.0472) (8.89) (%.95)




TABIEV - 3

a= .01, noﬂlﬂ (noanlﬂ) nF-58

51

oc ASN SDN
HIB
MPRT SPRT#* MPRT SPRT* MPRT
1. 1. 17. 12. 0.
(1.) (16.) (0.)
.9924 .99 23,06 18.84 5.25
(.9935) (22.16) (5.43)
STUT3 28.7 8.34
(T6%) (26.33) (8.43)
.5059 .50 28.21 32.80 2,69 9.52
(.5218) (28.30) (9-32)
Lh35 27.70 22.07 9.80
(.4591) (27.88) (9.67)
.0567 18. 9.58
(.0616) (19.49) (9.57)
.0080 | .01 14.05 11.13 7.48
(.0092) (14.54) (7.56)
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TABIE V - 4

a = .001, n°=78 (noa'78) nr=63

oc ASN SR
HIB
MPRT  [GPRT MPRT SPRT# MPRT
1. 1. 27. 18. 0.
(1‘) (25') (o')
.9993 | .999 36.42 28.83 7.0%
(.9993) (3%.96) (7.11)
.8084 50.13 12.45
(.8151) (49.02) (12.45)
5066 .50 50.26 74.10 45.24 14.58
(.5175) (49.85) (14.05)
eI 49.21 4o.22 15.20
(.4358) (49.00) (1k.57)
.0185 29.98 15.90
(.0205) (30.84) (23.60)
.00076 | .001 21,31 17.03 9.80
(.00092) (22.14) (9.76)
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A.k.2. TABLES VI - 1. 2. 3. kL.
111: A =1, against HE: A= 2.
s = 1. 4427 D = 1.4570

TABLE VI - 1

as=.l, nolll'b (no.sll),nF-].l

oc ASH SO
A HIB
MPRT SPRT#* MPRT SPRT# MPRT
0 1. 1 3, 3 0.
(1.) (3.) (0.)
1. .9236 .90 7.33 5.80 2.86
(.9299) (7.2%) (2.83)
1.35 .6150 8.44 3.46
(.6275) (8.47) (3.44)
.5095 .50 8.k 6.97 6.43 3.5
‘ (.5205) (8.45) (3.51)
D 4916 8.36 6.21 3.56
(. 5040) (8.44) (3.52)
1.75 .2104 7.35 3.58
(.2193) (7.52) (3.53)
2. . 0817 .10 6.16 4.61 3.27
(.0867) (6.56) (3.24)




TABLE VI - 2

a= .05, n°-26, (nm-26), n;-16

54

oc ASN SO
A HLB
MPRT SPRT#* MPRT SPRT* MPRT
0 1. 1. 5. 3. 0.
(1.) (5.) (0.)
1. 9620 | .95 10.58 8.66 3.87
(.9635) (10.46) (3.86)
1.35 . 6406 13.16 4.90
(.6462) (13.13) (4.93)
8 .5100 .50 13.17 12.51 10.83 5.0'&
(.51%0) (13.13) (5.06)
D 4879 13.09 10.42 5.07
(.4936) (13.10) (5.08)
1.75 1573 11,07 5,12
(.1607) (11.15) (5.08)
2. L0413 .05 8.80 6.88 L.47
(.0427) (8.91) (b.41)

s - s———— A-A-“A

s e e et =

b sl e s



TABIE VI - 3
a= .01, nosu, (do.-lbu), n;-52
oc ASN SDN

A HIB

MPRT SPRT* MPRT SPRT#* MPRT
0 1 1. 1. 8. 5. 0.

(1.) (8.) (0.)
1. .9922 .99 18.13 14.68 5.67

(.9926) (17.78) (5.70)
1.35 .6824 25.57 8.05

(.6875) (25.39) (8.08)
8 5066 | .50 25.85 30.46 22.51 8.30

(.5083) (25.60) (8.34)
D L4743 25.58 21.56 8.43

(.4802) (25.52) (8.39)
1.75 .0792 19.83 8.4k

(.0820) (20.00) (8.37)
2. .0079 .01 14.58 11.66 6.50

(.008k) (14.76) (6.50)




@ = .001, n = T1, (no

TABLE VI - &4

- *
B-=0'7l)’ nF = 57

56

oc ASK SDN
A HIB
MPRT SPRT# MPRT SPRT* MPRT
) 1. 1. 12. 7. 0.
(1.) (12:) (0.)
1. .9992 .999 28.44 22.46 7.40
(.9993) (27.90) (7.42)
1.35 <7315 .73 12.07
(.7358) (4%.10) (12.15)
8 .5016 .50 4543 68.82 4.17 12.58
(.5069) (45.33) (12.52)
D 4648 45.2% 39.31 12.71
(.4¥701) (45.18) (32.63)
1.75 .0320 32.06 12.34
(.0333) (32 4o) (12.2h)
2. .00076 | .001 22.5 | 17.8% 8.42
(.00083) (22.84) (8.39)
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APPENDIX V

A.5. TABLE VII : Characteristics of the Polsson IPRT
()‘o = D), SPRT_, SPRT epproxiuation

and F8ST

TABLES VII - 1, 2, 3, L
111: A = .0l against 32: A=l

A.5.1. TABLE VII - 1

a= ol, no = 58) nF = 39, n‘ = 22.20’ llD s 19-08

oc ASN SDN

MPRT SPRT FSST | MPRT SPRT MPRT SPRT

.0 1. 1. 1. 29. | 25. 0. 0.
.0025 .9958 29955 { 1. 29,98 26.36 3.84 6.03
.006 .9776 .9820| .98 | 31.0L 27.98 5.60 8.90

.01 .32 .9566 | .94 | 31.84 29.44 6.86 | 10.89
. 0% 26.57*

.015 .8858 9116 | .88 | 32.36 30.72 8.05 | 12.53

.02 .8187 8555 | .81 | 32.43 31.45 8.98 | 13.68

.025 .T469 7916 1 .75 | 32.16 31.73 9.80 .52
.03 6743 7240 | .67 | 31.64 31.63 10.50 15.17
.035 .6033 .6555 | .60 | 30.9% 31.2% 11.08 15.66

s .5479 .6005 | .55 | 30.26 30.7% | 11.48 | 15.56
.50 23.30%
D 4976 5495 | .50 | 29.56 30.16 | 11.79 | 16.17
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A.5.1. TABLE VII - 1 (continued)
¢=.l,n = 58, g = 39, n, = 22.20, o, = 19.08
oc ASN SDN
A
MPRT SPRT, | FSST | MPRT SPRT MPRT SPRT,
.055 .3628 4090 | .37 | 27.21 27.93 12.37 16.43
.07 .2369 27321 .25 | 24.50 24.81 12.44 16.06
.08 1759 2061 | .18 | 22.41 22.78 12.22 15.52
.1 .0950 21571 .10 | 19.18 19.17 11.40 1%.08
.10% 12.69%
11 .0694 .0865| .07 | 17.81 17.63 10.91 13.29
A.5.2. TABLE VII - 2
O .05 n =8, n, =65, n =305, o = 32.03
oc ASN SDN
A
MPRT SPRT, |PSST | MPRT SPRT MPRT SPRT,
.0 1. 1. 1. 4. 33. 0. 0.
.0025| .9986 .9989 |1.” 42,52 35.18 5.00 7.86
.006 .9896 29923 | .99 | 4k.50 38.23 7.9% | 12.73
.01 .9664 9750 | .97 | 46.39 b1.k42 10.32 | 16.14
<95* 39.,68%

.015 L9175 .9%63 | .93 | 48,03 44 .68 12,61 19.22
.02 .8501 8792 | .86 | 48.83 46.96 .50 | 21.32
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A.5.2. TABIE VII - 2 (continued)
a = .05, n, = 85, ny = 63, n_ = 37.55, ny = 32.03
oc ASN SDH

§ MPRT SPRT |FSST | MPRT SPRT MPRT SPRT,
.025 | .7703 .8076 | .79 | 48.85 48.22 16.13 | 22.83
.03 6844 | 7268 | .71 | 48.23 48.57 17.54 | 23.95
035 | .5978 | .6423 | .62 | k7.08 18.15 18.7% | 24.81

8 5292 | .5738 | .55 | 45.86 h7.34 19.54 | 25.32

.50 b1.8h4#

D 4672 | 5106 | .49 | kk.52 46.26 20.15 | 25.67
.55 3054 | .3418 | .33 | 39.82 41.81 21.12 | 25.89
.07 (1681 | .a94k | .19 | 33.86 35.51 20.80 | 24.65
.08 1097 | .1307| .11 | 30.27 31.57 19.97 | 23.20
1 ouk8 | .0581| .05 | 24.33 25.04 17.68 | 19.79

.O5#% 18.95+
11 .0282 | .0388| .03 | 21.96 22.46 16.45 | 18.09
TABLE VII - 3
a= .01, n = 143, ny = 117, n, = 78.39, ny = 66.26
oc ASK SDH

* MPRT SPRT_ | FSST | MPRT SPRT, MPRT SPRT
.0 1. 1. 1, |67, 52. o. 0.
0025) .9999 | .9999 (1S | T1.69 55.47 6.59 9.97
006 | .9991 | .9991| 1" | 715.75 61,06 | 10.96 |17.30
.01 .9931 .99381 .99 | 80.62 68.19 | 1%.95 |2k.19




A.5.3. TABLE VII ~ 3 (contim~d)
@=.0l, n = 143, nn = 117, n = 78.39, n = 66.26
oc ASN SDI¥

) MPRT SPRT, |FSST | MPRT SPRT, | MPRT SPRT
.01 99 67.25%

015 | .968L | .91t | .97 | 86.39 77.28 18.90 | 30.68

.02 916 | .9223 | .91 | 90.92 85.29 22.02 | 34.97

.025 | .8315 8428 | .83 | 93.55 91.18 24.78 | 37.73

.03 7264 7397 | .72 | 94.05 ok.U43 27.50 | 39.75

.035 .6107 6245 | .61 | 92.59 95.02 30.11 | ki.kg

s 5164 .5296 | .52 | 90.19 93.77 32.00 42.78
.50% 101.89*

D A311 | Lub3s | Juh | 87.14 91.39 33.48 | 43.82
055 233 | 2321 .23 } 15.39 79.66 35.47 | bh.99
.07 .08%2 | .0900 | .09 | 60.69 62.90 33.36 | 41.61
.08 o401 | .0u56 | .05 | 52.52 53.27 30.55 | 37.56
B 0084 | .0115 | .01 | 40.46 39.21 | 24.66 | 28.99

.01* 32.11%
.11 0037 | .0059 | .05 | 36.10 34.31 22.15 | 25.31
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A.5.4, TABIE VII - 4
@ = .001, n = 243, ny = 212, n_ = 143.97, ny = 120.8k
oc ASN soit

> MPRT SPRT, | FSST | MPRT SPRT MPRT SPRT
.0 1. 1. 1. 110, . 0 0
.0025| .9999 | .9999 | 1. 114.0 82.33 7.92 | 12.50
.006 | .9999 | .9999 |10 120.3 91.07 | 13.55 | 22.34
.01 9993 | .999% |17 128.5 103.3 19.41 | 33.76

99 102.9*
.015 .9917 .9937 | .99 |1bo.0 121.9 26.13 | 47.39
.02 .9610 .9685 { .97 |151.3 1k2.1 31.53 | 57.45
.025 .8903 .9050 | .91 |160.2 160.2 35.75 | 62.96
.03 .T763 .T958 | .81 |164.8 172.7 39.95 | 65.63
.035 6331 .6529 | .67 |16k4.0 177.8 44,78 | 67.97
s .5102 5272 | .55 |159.9 176.7 48.78 | 69.61

.50% 230.2%

D 3992 | .2k | Luh | 153.5 171.1 52.05 | 73.07
.055 .1526 L1564 | .18 |127.3 140.9 55.50 | 76.19
.07 .0327 | .0338 | .0b | 96.64 | 100.8 43.71 | 65.68
.08 .0101 .0110 | .01 | 81.42 81.01 | h2.26 | 55.22
1 .00077 | .0012 | .001| 61.05 56.20 | 31.68 | 37.96

.001% 49,15#
11 .00020 | .0004k | .00025 54.16 48.51 | 27.91 | 32.07




A.5.5. ASN CURVES

ASN
220F
------------------------- %s.001
—D SPRTO
180 ——— SPRT*

—--- FSST
o-ng
X-ﬂo

Figure 2. Poisson ASN
Hy: A=.0l agoinst H,: A=.|
54030087, D-042994
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APPENDIX VI

A.6. TABIE VIII: Characteristics of the Poisson MPRT
(hon D), SPRT, SPRT approxiration end
“Fe8T

TABLES VIII - 1, 2, 3, &4
H: A\ =2. agalnst Hyt A = Y.

s = 2.885L D = 2.9140

A.6.1. TABLE VIII - 1

Q= .l, n, = 10, ng = 6, n = 3.22, n, = 3.10

oc ASN SDN
A .
MPRT SPRT, | FSST | MPRT SPRT MPRT SPRT
0 1 1 1 2. 2 0. 0.
1.5 .9925 9932 | .99 | 3.27 3.08 1.05 1.34
1.75 9738 9738 | .98 | 3.62 3.56 1.27 1.76
2.0 .9298 9k0 | .9k | 4.00 h.12 1.48 2.19
.90 2.90%
2.25 .8491 8658 | .86 | 4.33 L.68 1.64 2.54
2.5 7307 W62 | .75 | b.56 5.11 1.75 2.78
2.65 L6463 65712 | .67 | 4.63 5.27 1.80 2.87
2.75 .5871 5938 | .61 | 4.64 5.32 1.83% 2.91
s 5062 .5065 | .54 | 4.62 5.32 1.86 2.95
.50% 3.48%
D .4893 4883 | .52 | k.61 5.31 1.86 2.95
3,25 3070 2938 | .34 | L.37 k.98 1.89 2.93
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A.6.1, TABLE VIII - ) (continued)
a=.l, n =10, ngs= 6, ng = 3.22, ny = 3.10
oc ASH sDH
A
}MPRT SPRT, | FSST | MPRT SPRT MPRT SPRT
3.5 .2016 .1858| .23 | L4.08 4.56 1.86 2.80
3.75 A254 | 1116 L1k | 3.77 h.10 1.79 2.60
L, 0746 0649 | .09 | 3.45 3.64 1.69 2.34
L 2.30%
4.5 0240 .0211| .03 | 2.90 2.90 1.45 1.82
A.6.2. TABLE VIII - 2
o = .05, no = 13, n; = 8, nu = 5.&, % = 521
ocC ASN SDN
A
MPRT SPRT, | FSST#| MPRT SPRT MPRT SPRT
.0 1. 1. 1. 3. 2. 0. 0.
1.5 .9984 998k | .99 | 4.35 3.76 1.38 1.65
1.75 9912 | .9925 | .99 | 4.96 k.48 1.72 2.28
2.0 9647 9Tl | .95 | 5.65 5.42 2.04 2.9
~”* l*-33*
2.25 8973 9118 | .86 | 6.33 6.45 2.29 3.50
2.5 .TTh0 B T2 | 6.85 7.34 2.46 3.82
2.65 L6761 694k | .62 | 7.02 7.68 2.53 3.91
2.75 . 6047 6206 | .55 | 7.06 7.80 2.58 3.95
s 5052 5166 | .46 | 7.03 7.83 2.63 3.99
- S0% 6.25%
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A.6.2. TABLE VIII '- 2
o= .05, no = 13’ n; = 8, ns - 5."‘2’ nD = 5.21
oc ASH SDI

A

MPRT SPRT, | FSOT*| MPRT SPRT, MPRT SPRT,
D L4843 Aokt LWk | 7.02 7.82 2.65 3.99
3,25 .2648 L6u 1 25 | 6.51 7.20 2.73 3,94
3.5 .1496 1466 .15 | 5.93 6.42 2.68 3.75
3.75 0772 0752 .08 | 5.30 5.59 2..51; 3.h2
k., .0370 03691 .05 | k.72 4.83 2.33 3.00

.O5% 3. Lk .
4.5 0073 .0088] .01 | 3.78 3.70 1.87 2.20
A.6.3. TABLE VIII - 3
a= .01, n =22 n; = 16, n_ = 11.25, o) = 10.78
oc ASN SDN

)\ .

MPRT SPRT, | FSST#*| MPRT SPRT MPRT SPRT

.0 1. 1. 1. ' 3. 0. 0.
1.5 <9999 9999 | 1.7 7.05 5.61 1.67 2.11
1.75 '.9993 .9995 | 17 8.06 6.79 2.2% 2.96
2. .9928 991 | .99 | 9.39 8.51 2.91 4,20
8 T.35%

2.25 9567 9641 | .94 |11.00 10.84 3.57 5.49
2.5 .8lili2 8601 | .79 |12.54 13.31 3.97 6.27

e e+ s



A.6.3, TABIE VIII - 3 (continued)
a= .0l n =22, n; = 16, n_ = 11.25, n; = 10.78
oc ASN SDN
A
MPRT SPRT, | FSST#| MPRT SPRT MPRT SPRT
2.65 .T285 58| .66 |13.16 k.4 4.10 6.43
2.75 .6356 6511 | .57 |13.37 14%.8% 4,17 6.49
s .5008 51121 .55 [13.35 14.98 4.30 6.56
.50% 15.25%
D 4723 8k | Jb2 13.30 14,95 4,32 6.58
3.25 .1908 .1880 | .17 |11.88 13.11 4,52 6.65
3.5 0757 o723 | .07 [10.32 10.93 4.31 6.18
3.75 .0250 0237{ .05 | 8.84 8.89 3.84 5.30
" .0071 0072 | .003| 7.62 7.29 3.29 4.32
.01 # 5.83%
4.5 L0002 | ,00075| .00L| 5.93 5.27 2.39 2.84
A.6.4. TABLE VIII - 4
a = 001, n_ = 36, n; = 28, n = 20.59, 0 = 19.65
oc ASN SDN
Y
MPRT SPRT, |FSST#*| MPRT SPRT, MPRT SPRT
.0 1. 1. 1. 6. 4, 0 0
1.5 .9999 .9999 |17 10.83 7.86 2.10 2.h9
1.75 .9999 .9999 |17 12.42 9.58 2.79 3.65
2. 9993 | .999% {17 |14.55 12.25 3.75 5.53
-999* | 11.2%%
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A.6.4. TABIE VIII - 4 (continued)
a = .001, n, = 36, n;. =28, n_ = 20.59, ny = 19.65
\ oC AN Eoill
/ r-. - e c——— o S - o el s
MPRT SPRT | FSST*| MPRT SPRT_ MPRT SPRT
2.25 .9871 | .9898 | .99 |17.45 16.51 k.97 8.13
2.5 9060 | .9151 | .91 |20.85 22.15 5.89 | 10.01
2.65 7856 | .7943 | .79 |22.%1 25.15 6.08 | 10.22
2.7% 6738 | .6783 | .68 |23.16 26.46 6.16 | 10.15
8 . 5005 L4963 | 47 |23.26 26.99 6.38 10.18
«S50% 3h. 41
D A63h | LusTh | L | 23.16 26.91 6.u4 | 10.22
3.25 .1269 143 | L1k [19.79 22.17 6.88 10.64
3.5 .0307 .0255 | .04 |16.43 17.10 6.24 9.41
3.75 .0055 { .oouk | .01 |13.64 13.09 5.19 7.37
b, .00069 | .00074] .001 |11.57 10.38 b2 5.57
.00L#* 8.92#
k.5 .00071 { .00034| .00023 8.89 7.32 2.99 3,46

¢ b e -



A.6.5. ASN CURVES 68

ASN
35r
—— MPRT
—-—SPRT,
—— SPR
30 ---— FSST
I e et « +.00!
26}
20}

------------- - Qf

Figure 3. Poisson ASN
Hy: A =2, against Hy: A= 4.

L, 5228853901 ,D=2.9I39991 oA

15 175200 25 SD3 32535 4




APPENDIX VII
COMPILER PROGRAM

A.7. K. Fukushima, MPRT-A
N 1200 Y 2400 Z 2400 8 0150 W 0200

1o B )

HHWHH.H%HNNHHHHHHNHHHHHHWHNH"OHH"‘&HH*HHHHHH&HN

n950=$es ror:

69



COMPILER PROGRAM (cont.)
n95'l
n953

tr:ll.l

n955
%tion
n957

N L L L L L L L L L L L L L L L L L L L L L L L e L T T R R R N B R L N T e R R T L R N N Y

70




COMPILER PROGRAM (cont.)
n1003=
n‘looa- b, m
m 005

n1 006=$the

$u'e”

n1007s=

n1 008=:

n1 009=3lative

n1010=$ pois

n 011=%on p
up

m012=3b.
n1013=$to inr$
n O h=$inity $
mMO15=§this 1:
nO16=$s the
n O 7=$end of$
n1018=§ tri
n019=3 prac
n1020=8icall
Mo =$this 1
n) 022=3s the
n1023=$s.d. o$
n‘loas 4 ml:.
nl =3er o
nl 026=$sampLe
nl027=$s $
m6 ﬂ,-oo,yh yﬁ,..”yﬁmwt
om t _ty2 ty3 ¢ b ¢
ty28 ty29 ty30 4
M7 tyRN ty32 ty33 ty3h
018 ty35 ty36 ty37 ty38
21=(+01s,y3* - *Ols,Y1*)
£2=(*O1s,y3* - *Ols,yR*)
z"i*m s,y2¢ - *01s,1*)
zh=(*08,2xyl*)
y5=sh/z2
y6-§y3-ye)/s2
/byl
=(y2- T
0080 ty5 tyS ty7 ty8
0079 atn905 atnN3
n902=yT-y55
tn902 o
ataotl ataNn9
y9=(y1-y5)/(¥6-¥8)
0078 ty9 b 4

0077 atn920 atn923
Y1 O=y5Hybxy9
YN =y T4yExy9
0076 ty10 tyln
0075 atn92k atad
0074 atn932 atn936
n} =0 4
0002 y(1000+n1 )=y5+ybxal b 4

L Y te Ma N Ra B le Ta e Mo Mo B B B B Mo o Bo B o Mo Ba B )

[ e Be No N

o]

N Ne N N e e e T T B Bs Mo B )



0ne3

012k

0nes

COMPILER PROGRAM (cont. )

znl =y 74+y8xm 4
& if y(1000im1) v O 4
y(10004n1 )=(-1,) ?
nf'l O#n1 ) =y(10004n1 ) 4
n(5004n1 )=2zn)
gh 1f znm1-n(5004m1) u O 4
n(5004n1 )=n( 500t ;-0-1 o
Ya(3o0tan) ta
v ta(l
n'l-n1+1( b g ( o) f
g2 if n(5004n1-1)-n -
n900=n -1 ) ('.fo‘m R4 f
atn937 atagh3’ 4
tn9%00 ¢
atn1MS atnl 020 ? The end of Part A,
Y39=y2 b g
noN =0 ¢
y2=y28
gho 1r Y2u0 b 4
& o
n901 =\ 4
Yy2=y29 b 4
g ity2uo0 b
&5 g
no90 =2 4
Y2=y30 4
20 it y2u O 4
&5 g
no90 =3 4
ye=y5 4
Y it y2u O b ¢
& b ¢
no0 =i b 4
ya=y32 ¢
22 ify2u O ¢
&S 4
n901 =5 ?
ye=y33 b g
&2) iry2u 0 b o
&5 4
n901 =6 b 4
y2=y34 ¢
.12" ify2uo b 4
& 4
ngN =7 4
ye=y35 ¢
8§25 iry2u 0 b g
a5 b ¢
n9N =8 ?
ye=y36 r
aA2b irfy2u 0 4

g )

T2




026

ner

oomn
one

03

on5
00t 7

COMPILER PROGRAM (cont.) 73

n9N =9 4

y2=y37 4

al271 1f y2u 0 b 4
&5

b e
n9nN=10 ¢
y2=y38 ¢
g2 it y2u 0 ?
&5 f

¥1000=(*02s, (-1 )xy2*) b4

ty1000 b o

71,n2,1,1,n902, L 4

2=n2 o

¥(10004n2) =(y(10004n2-1 )xy2)/y12 t

n2=y12 b 4

ty(1000in2) tn2 r
f

{:ggh atn997 4 The end of Part B.

21 000=y1 000 ? 4

121000 t(0.) b 4

9,“2,1 )1 ’n9m’ f

z('l 000+n2)=l('l 000+n2-1 )41(1 0004n2) b g

12(1000#n2) tn2 4

yO=y0 4

atn998 atnl005 b4 The end of Part C.

0= e

t(1.) t(0.) b 4

51,n2,1,7,n902, b4

£n2=1-2(1000in2-1) ¢

tzn2 tn2 ¢

yO=yO0 f

atn1 006 atm1 014

nl =1 f
n1050=n501 -1
12,n2,n11,7,n1050,
¥(100#n2) =y(1 0004n2)
@13 1 a1 u (1)
y2001 =y(1004n11)
ty2001 t(1.)

ab T

y2001=0 ¢

ty2000 t(1.)

22001 =zn500

t(0.) t(1.) ts20m The end of Part E,
al=n1+1 4 Part F

eNn ir n(10m) v O f Part G

y(20004n1 ) =0

t(0.) tm

n1051 =n(5004n1 )-1
n1 094=n(500+n1 -1

n 095=n(5004n1 -1 ) -1
20,n2,0,1,n1095,

The end of Part D,

(o B0 o TN T Y -

la Bo N Y

Lo L. Bo o No )



onsd
009
o006

8

8% 838 i R §

8

COMPILER PROGRAM (cont.)

y(5004n2) =0 f

16,n3,0,1,n2,

V(SM)W(SM)‘WU 004n3)xy(1 000in2-n3)
ty(500in2) tn) ta2 ¢

yO=y0 4
@28 1f n(5004n1-1) u »(500in1) 4
9k,n2,m 09&,1 MO, 4
¥(5004n2)=0 f

93,n3,0,1,n1095, t
y(som)-y(soomm(l oom):v(l 000inl-n3)
ty(5004n2) tml

yO=y0 r

e28

g22 if n( onn )-n(1 om -1’5"3
y(20004n ) =0

t(0.) tn)

n1 05k=n(104n1 )

n1 055=n(5004n1 ) -1
25 4
y(20004n1 )=0
n1052=n(10401 -1 )41
n1053=n(104n1)
n1054=n(104n1 )41

n1 055=n(5004a1 ) -1
23,nk4,n1052,1,n1053,
y(2000+n1 ) =y( 200041 }4¥(1 oonk)u('l 0004n(1 OtaY )-nk)
ty(20004n1) ta £

atn9il atn952 o

mo51=n(5004m1)-1 ¢

n109%4=n(500n1-1) ¢

n1 095=n(5004n1 -1 )-1 ¢

n052=n(1041-1 )

98,n2,n1054,1,n1095, 4

¥(5004n2)=0 r

27,n3,m052,1,n2,

y(500m2) y {50042 )4y 1 00ta3)xy(1000¢m2-n3)
ty(soome) m1055 tn2 ta3

yO=yO
&8 1t n(soom-n u n(soom) b4
90,n2,n1094,1,n105Y,

5004n2)=0 r

T,n3,n1052,1,n 095, o
y(soome)-yisoommh 00t23) y(1000%0-13)
ty(500in2) tn) ta2
yO=y0 T
n2=n(500tn1 ) ¢ The end of Part 1.
n057=n(10M1-1 ) ¢
n1 058=n(5004n1 -1 )-1 r
N5=0 f
29,n5,m057,1,m 058, 4
ns-wm(wmnsm(na-ns) 4
£( 20004 )=y15

8nd of Part H,
?

1o o Jo Mo N ) e B N N

Th



)

0032

COMPILER PROGRAM (cont.) 5

tn) tz(20004n1) r
atn953 atn9in b 4
n1 061 =n(104n1 )} 4
n1062-n(5004n1)-1 ¢
31,n2,n1061,1,n1 062, 4
y(1004n2)=y(5004n2) £
€32 1f m1 w n900 4 Part K
as
y20=0
y21=0
y22=0
y23=0
34,m1,1,1,n900, r

y20=y204y(20004n1) f

y2 =y +2(20004m1) ¢

y22=y224n1 x( y(20004n) )‘hgﬁm ) 1
y23=y234n] xnl x(y( 200041 }4+5(2000im1)) ¢
ty20 tn900 ty2 tyh ¢

atn962 atn967

ty21 tn900 ty2 tyk
atn968 atn972

ty22 ty2 tyk
atn973 atn979
y2U=y23-(y22xy22)
ty2h ty2 tys
atn960 atn986
y25=(*06s,y2lx)
ty25 t

atnl1 021 atnl 027
atn987 atn993

g0 1f n901 u 0
g 1if n9%0 u 1
120 i n90
a1 if n9M
a2 1f n9m
€123 1f n90
a2k 1f n9m
@125 1r n90
126 1f n5N
127 1f n90
g2 12 n90 u 1
ye=y39 ¢

a e

The end of Part J.

la Ba B No N Y

The end of Part L.

EEEeEEEce s
e R R R B R R B B B T N T N N e N N T N Y )

2
3
L
5
6
7
8
9
0

The end of Par M.
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